
Editorial
Bell Jar to Cloud
Since the breakthrough in the field of IVF and the birth of
the first test tube baby in a “BELL JAR” in 1978, the
technological advances have progressed immensely,
pushing forward the frontiers of scientific innovation.

START OF THE STORY IN A BELL JAR

1978 was an incredible year when life invoked in a Bell
Jar − birth of Louise Brown (Louise Brown’s embryo was
taken from the jar— called a “desiccator” and transferred
into her mother Lesley’s womb). This feat was achieved by
the trio comprised of scientist Robert Edwards and his
gynaecologist colleague Patrick Steptoe and Jean Purdy,
the world’s first embryologist. They had been working
toward it for more than a decade. Also in 1978, we
witnessed the milestone achievement of the Nobel
Prize being declared for the discovery of cosmic
microwave background radiation—the first direct
evidence of the Big Bang theory and the inception point
of our universe. There is a beautiful parallel we draw
between the Big Bang and life starting in a bell jar. This
phenomenal declaration to the world that life could be
conceived outside of a woman’s womb was the start of an
amazing journey of scientific innovations and discoveries
that have resulted in implantation rates ranging from<5%
to the present where they touch >50%.
Fertility is considered a basic human right

As the availability of IVF services is expanding, it is being
utilized increasingly. The demographic scenario, societal
norms, and a greater number of women delaying child
bearing due to priority given to career opportunities have
contributed to a lowering of birth rates worldwide. In
many nations, the fertility rates are substantially below
population replacement levels, which has resulted in the
governments withdrawing stringent population control
policies and instead executing policies that promote
population growth by way of steps like improved
insurance coverage. Although the journey of treatment
through IVF is an exacting one in terms of financial,
emotional, and physical stress, the process of IVF has
contributed to as many as 4% to 5% of births in some
parts of the world. Over 2 million babies have been born
by IVF in the past four decades. This technology initially
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was established to help couples overcome childlessness
but has helped in expanding horizons in terms of medical
genetics, fertility preservation, social egg freezing, and
three parent embryo generation. And there are
breakthrough advancements in the form of Robotics,
Nanobots, artificial intelligence-machine learning, deep
learning via using artificial neural network (ANN),
OMICS, and stem cell advances being applied for in
vitro gametogenesis (IVG).

JOURNEY TOWARDS THE FUTURE: THE CLOUD

TECHNOLOGY AND AI

Various strategies intent on reducing the number of
injections by utilizing long-acting gonadotropins or oral
medications are already available and are becoming popular
for the treatment of select patient populations.[1,2]

Advances in culture media and culture systems from
second generation of sequential media to third
generation media simplex optimized− derived media
(SOM) using micro drops and under oil culture systems.
Recent advancements in imaging with portable lower-cost
ultrasound devices may further simplify follicular and
endometrial monitoring by way of convenient mobile
facilities and potentially even self-operated endovaginal
telemonitoring.[3] AI aided improved ultrasound helps
with the following

(1)
ertilit
Assess ovarian reserve (application based on 2D or
3D ultrasound).
(2)
 Accuracy in assessment of endometrial receptivity
demonstrating segmentation of the region of
endometrium, classification of endometrial pattern,
estimating peristalsis of endometrium, and assessing
endometrial blood supply quantitatively.
Perhaps the most promising technological development
that might revolutionize IVF access in the near term is
automation and miniaturization of the IVF laboratory.
Building, staffing, and manually operating an IVF
laboratory account for much of the high cost,
maldistribution of access, and variability of outcomes.

The novel IVF lab-on-a-chip concept has the potential to
revolutionize IVF by enabling the automation of virtually
all of the steps involved in a single system.[4-6]
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Microfluidics is a field of study and design whereby fluid
behaviors are accurately controlled and manipulated with
small-scale geometric constraints that yield the dominance
of surface forces over their volumetric counterparts.
Integration of microfluidics into the IVF laboratory
may result in: (1) precisely controlled fluidic gamete/
embryo manipulations; (2) providing biomimetic
environments for culture; (3) facilitating microscale
genetic and molecular bioassays; and (4) enabling
miniaturization and automation.[6] Current efforts are
focused on integrating individualized microfluidic
procedural components into a future IVF lab-on-a-chip.

Microfluidic sperm-sorting devices[7-9] and automated
sperm analyzers[10] are already being introduced into
routine IVF practice. Indeed, microfluidics has been
used for the isolation of sperm from semen and
testicular biopsies.[11-17] These novel sperm-isolating
microfluidics devices providing for the collection of
highly motile sperm populations replete with enriched
normal morphology, most importantly, and reduced
DNA fragmentation relative to conventional methods
of sperm isolation.[7,15,18,19]

The future is “Automated ICSI” which will likely involve a
combination of microfluidics, robotics, and refined
optics.[20] As ICSI has become the dominant method of
insemination in human clinical IVF, the importance of
precise microfluidic push/pull cumulus-oocyte-complex
cumulus cell removal has been shown to yield good
visualization of the oocyte cytoplasm/orientation.[21] The
fertilization step by ICSI is perhaps the most technically
difficult step to achieve on a commercial scale, but the
feasibility of one such system has been demonstrated.[21]

Embryo culture has already been fully automated with the
use of time lapse incubators, which allow continuous
monitoring of embryonic development. Data generated
from time-lapse incubators can be analyzed with machine
learning to aid in the selection of embryos with the highest
pregnancy potential.[22-24]

Additional information about embryo viability may be
gleaned from other OMICS technologies, which can
either sample the embryo directly or indirectly via its
culture medium. The technologies in question include
genomic, transcriptomic, proteomic, and metabolomic
analyses.[25]

Multiomics is the future

Multiomics is the future approach for the identification of
any abnormality in an embryo. The future envisages
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proper homogenization of data, individual OMIC
biomarkers, and data processing models that unite
multiple data sets into a common platform.[26]

Another future perspective is microfluidic outlet ports
connected to OMICs analyzers, which are able to assess
the implantation and developmental potential of each
cultured embryo without invasive assessment.

Metabolomics
Metabolomics pertaining to culture media , follicular fluid,
seminal fluid and endometrial metabolomics are the
potential newer techniques for ART.

Genomics
The DNA and RNA are extracted from oocytes or
embryos genomes are amplified, labeled, and
hybridized, and the data analyzed by FISH, CGH, SNP.

Proteomics
Analyzing proteins (differ from cell to cell) can provide a
promising noninvasive tool.

(1)
 Single protein analysis and secretome.

(2)
 Embryonic secretome and protein profiling.

(3)
 Non-invasive proteomics.
Proteomics thus helps with endometrial profiling and
predicting implantation success.

Follicular fluid proteomic markers would help to predict
oocyte quality.

Although the use of preimplantation genetic testing
(PGT) of trophoectoderm cells of blastocyst stage
embryos is quite common in clinical practice, the use
of the technique of microfluidics could be quite an
advancement for PGT. Microfluidics technology has
been successfully used to culture mammalian
preimplantation embryos from the zygote to the
blastocyst stage.[27-32] The importance of individual
embryo culture in microfluidic devices can be
appreciated when one considers the desire to integrate
real-time imaging and morphometrics,[33] molecular,[34]

and/or metabolomic[35,36] bioassays, biomechanics,[37]

and non-invasive PGTof cell-free DNA in spent media.[38]

Noninvasive PGT, which utilizes cell-free DNA released
into the spent embryo culture media, is likely to become
the first omics technology used clinically in conjunction
with a microfluidic system.[38]

Presently, cryopreservation of sperm, oocytes, and
embryos has become the standard of care. Vitrification
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has become the dominant method for oocyte and
embryo cryopreservation. While semi-automated/
automated systems for oocyte/embryo vitrification
have been reported, and possibly microfluidics can be
used to precisely control cryoprotectant exposures
(gradual vs. step-wise exposure) to oocytes/zygotes/
embryos and thus reduce osmotic strain, reduce sub-
lethal membrane damage, and improve subsequent
development.[39-42] Integrated microfluidics for
vitrification with automation is promising. Such a
system/device will reduce reagent consumption,
decrease labor intensity, facilitate ease of use, offer
medium to high throughput, and may foster point-of-
care cryopreservation and/or promote in-office
cryopreservation procedures that require less in the
way of technical/personnel expertise and sophisticated
laboratory/equipment needs.

The growing utilization of IVF will transform the way a
substantial proportion of the human species procreates. It
is likely that in the near future, as many as 10% of all
children will be conceived through IVF in many parts of
the world. Given the rapid scientific and technological
evolution of in vitro gametogenesis and reproductive
genetics, it is imperative that both the public and
regulatory bodies be engaged in establishing a
framework for the ethical evaluation of emerging
technologies. Such public engagement is critical.
Premature commercialization of costly and unproven
“add-ons” to IVF has been an ongoing issue in the
field, ranging from procedures to medicines to
laboratory techniques. Collectively, the routine
application and marketing of unproven IVF add-ons
may erode public trust in the reproductive medicine
field. Thus, it is imperative for the field to prioritize
requiring confirmation of the safety and efficacy of
technologies before allowing them to be offered
routinely to IVF patients. Reproductive medicine is
rapidly transforming human procreation and is thus
bound to remain of fundamental importance to both
science and society.

The mission remains to give everyone who dreams of
being a parent the opportunity to eventually hold a healthy
baby in their arms but ensuring that the technology used
to assist is always rooted in ethics and safety.
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